آموزش تخصصی آمار و معادلات ساختاری

SPSS- AMOS- LISREL- Smart PLS- Warp PLS- R

آموزش تخصصی آمار و معادلات ساختاری

SPSS- AMOS- LISREL- Smart PLS- Warp PLS- R

آموزش تخصصی آمار و معادلات ساختاری

تحلیل آماری یک ابزار بسیار مفید برای دستیابی به راهکارهای مناسب در زمانی که فرآیندهای واقعی تحلیل به شدت پیچیده یا در شکل واقعی آن ناشناخته است. می‌باشد. تحلیل آماری، فرآیند جمع آوری، بررسی، خلاصه سازی و تفسیر اطلاعات کمّی را برای ارائه ی دلایل زیربنایی، الگوها، روابط، و فرآیندها پوشش می دهد.

*********
اینجانب سیدسعید انصاری فر دارای لیسانس و فوق لیسانس مهندسی صنایع، فوق لیسانس مدیریت دولتی گرایش MIS و دانشجو دکترا مدیریت دولتی گرایش تصمیم‌گیری و خط مشی‌گذاری عمومی می‌باشم. برخی از سوابق علمی پژوهشی به شرح زیر است:

1- دارای بیش از 40 مقاله در موضوعات مختلف (کنفرانس های بین المللی و مجلات علمی پژوهشی و ژورنال ISC)
2- مولف سه کتاب (مبانی سازمان و مدیریت، آموزش مدل سازی معادلات ساختاری و SPSS، نگهداری کارکنان، چالش ها و نظریه ها)
3- مشاوره آماری و انجام تجزیه و تحلیل آماری در بیش از 700 پایان نامه ارشد و 50 پایان نامه دکترا
4- رتبه 7 کنکور دکترا
5- تدریس خصوصی آمار توصیفی و استنباطی و نرم افزارهای SPSS، AMOS، Smart PLS، LISREL
6- کسب رتبه پژوهشگر برتر و برگزیده در جشنواره علمی پژوهشی شهرداری اصفهان

*********
تماس با ما:
ایمیل: ansarifar2020@gmail.com
شماره همراه: 09131025408
شبکه اجتماعی ایتا: 09131025408

*********
گروه علمی آموزشی پژوهشگران برتر:
این گروه با بهره مندی از کادری مجرب آمادگی تجزیه و تحلیل کیفی و داده های کمی آماری در موضوعات مختلف با استفاده از نرم افزارهای مختلفی چون SPSS ، Smart PLS، LISREL،R ، AMOS، Nvivo، Max QDA را دارد.

همکاران:
1-مجید دادخواه
دکتری مدیریت از دانشگاه آزاد اصفهان
2- مرسا آذر:
دکتری مدیریت از دانشگاه آزاد اصفهان
3- زهرا وحیدی:
دکتری مدیریت آموزشی، مدرس تحلیل کیفی
4-محمد مهدی مقامی:
دکتری آمار از دانشگاه اصفهان
5- طناز فریدنی:
کارشناسی ارشد آمار و ریاضی از دانشگاه اصفهان
6- زینب احمدی:
کارشناسی ارشد روان شناسی از دانشگاه اصفهان


***********
از دلایلی که پژوهشگران انجام تحلیل آماری را به ما می سپارند:
- تیم حرفه ای و با تجربه
- متخصص در زمینه انواع نرم افزارهای تحلیل آماری با بیش از 10 سال تجربه
- پشتیبانی و آموزش حضوری به صورت رایگان

بوت استرپ در SPSS

سه شنبه, ۱۱ شهریور ۱۳۹۹، ۱۲:۰۱ ق.ظ

bootstrapping tech

 

روش بوت استرپ از گروه روش‌های ناپارامتری و در بخش تکنیک‌های باز نمونه‌گیری قرار می‌گیرد. هدف از اجرای بوت استرپ، پیدا کردن خطای (واریانس) برآوردگر با استفاده از تکرار مراحل نمونه‌گیری و برآوردیابی است. در هر بار تکرار براساس یک عمل باز‌نمونه‌گیری از داده‌ها، برآوردگر مورد نظر محاسبه می‌شود. تکرار این مراحل مثلا به تعداد ۱۰۰ بار، منجر به تولید ۱۰۰ مقدار مختلف برای برآوردگر می‌شود. میانگین این مقادیر، برای بدست آوردن امید ریاضی یا اریبی برآوردگر و واریانس یا انحراف معیار این مقدارها نیز می‌تواند برای پیدا کردن خطای برآوردگر به کار رود. در اینجا قصد داریم این روش را در SPSS مرور و به کار بگیریم. در نتیجه کار را با یک مثال در SPSS دنبال می‌کنیم. البته توجه داشته باشید که برای استفاده از این روش باید نسخه SPSS® Statistics Premium Edition را داشته یا بسته افزونه Bootstrapping را روی SPSS نصب کرده باشید.

استفاده از بوت استرپ در دستور Explore

با توجه به مقدمه‌ای که در مورد روش بوت استرپ گفته شد، در این قسمت به بررسی یک مثال به کمک داده‌های آموزشی SPSS می‌پردازیم. فایل Employee data.sav در پوشه samples مربوط به مشخصات کارمندان یک شرکت است. البته می‌توانید با کلیک روی اینجا این فایل را با قالب فشرده دریافت کنید. مدیریت شرکت احتیاج به بررسی تجربه کاری کارمندان در محل کار قبلی دارد. این متغیر کاملا به راست چوله است که باعث می‌شود، میانگین (Mean) برآوردگر خوبی برای شاخص تمرکز نباشد. بنابراین بهتر است از میانه (Median) برای نمایش نقطه تمرکز این متغیر استفاده شود. ولی متاسفانه برای میانه نمی‌توان به راحتی یک فاصله اطمینان به فرم بسته پیدا کرد. بنابراین از روش بوت استرپ برای پیدا کردن یک فاصله اطمینان برای میانه سابقه کار در این مثال استفاده می‌کنیم.

 

پس از باز کردن فایل اطلاعاتی Employee data.sav برای دسترسی به دستور Explorer مراحل زیر را طی کنید.

Analyze > Descriptive Statistics > Explore…

به این ترتیب پنجره مربوط به دستور Explorer باز می‌شود. تنظیمات این پنجره را مطابق با تصویر زیر انجام دهید.

explore dialog box

مشخص است که متغیر با نام prevexp و با برچسب (Previous Experience (months برای محاسبه میانه و فاصله اطمینان آن در کادر Dependent List قرار گرفته است. همچنین به انتخاب گزینه Statistics در کادر Display‌ دقت کنید. به این ترتیب فقط آماره‌ها محاسبه شده و نمودارها ترسیم نخواهند شد. برای اجرای روش بوت‌استرپ و محاسبه فاصله اطمینان، دکمه Bootstarp را انتخاب کنید. پنجره‌ای به مانند زیر ظاهر می‌شود. تنظیمات در تصویر دیده می‌شود. البته هر یک از این پارامترها را در ادامه توضیح خواهیم داد.

bootstrap_dialogbox

با انتخاب گزینه اول یعنی Perform bootstrapping از SPSS می‌خواهید که خطای برآوردگرها را به کمک این روش محاسبه کند. در کادر Number of samples تعداد نمونه‌ها را مشخص می‌کنید. هر چه تعداد نمونه‌های بیشتری را عمل باز‌نمونه‌گیری معرفی کنید، دقت برآوردگرها بیشتر خواهد شد. البته این کار منجر به افزایش زمان محاسبات نیز خواهد شد. از آنجایی که انتخاب نمونه‌ها به صورت تصادفی صورت می‌گیرد، با تکرار دستور Explorer، نمونه‌ها و میزان خطای محاسبه شده متفاوت خواهند بود. ولی با انتخاب یک seed برای تولید اعداد تصادفی مربوط به انتخاب نمونه‌ها، می‌توانید نتایج یکسانی از تکرار این دستور داشته باشید. البته انجام این کار ضرورتی ندارد ولی با این کار و اجرای دستورات، نتایجی درست به مانند نتایجی که ما در این نوشتار بدست آورده‌ایم، حاصل خواهد شد. به این منظور در کادر Seed مقدار 592004 را وارد کنید تا همیشه همین نتایج را بدست آوریم.

در کادر «فاصله اطمینان» (Confidence Intervals) نیز امکان تعریف خصوصیات فاصله اطمینان را دارید. مقدار سطح اطمینان را در قسمت (%)Level بین ۵۰ تا ۱۰۰ وارد کنید. اگر می‌خواهید یک فاصله اطمینان ۹۵٪ برای میانه ایجاد کنید، مقدار ۹۵ را در این کادر بنویسید. برای ایجاد این فاصله اطمینان دو روش در این پنجره معرفی شده‌اند. روش ابتدایی و ساده‌تر، استفاده از چندک‌ها یا همان صدک‌های میانه‌های حاصل از باز‌نمونه‌گیری‌ها است. روش دوم استفاده از تکنیک BCa یا (Bias Correction and acceleration) است که البته زمان و بار محاسباتی بیشتری دارد ولی در عوض دارای دقت بیشتری نیز هست زیرا اریبی را کاهش می‌دهد. بنابراین در اینجا از این راهکار استفاده کرده‌ایم.

در قسمت انتهایی یعنی Sampling می‌توانید روش نمونه‌گیری را به صورت یکی از حالت‌های نمونه‌گیری ساده تصادفی (Simple) یا نمونه‌گیری طبقه‌ای (Stratified) انتخاب کنید. در نمونه‌گیری طبقه‌ای باید متغیری که باعث ایجاد طبقات می‌شود را در کادر strata variables قرار دهید. با فشردن دکمه Continue به پنجره قبلی بازگشته و با انتخاب دکمه Ok خروجی را در پنجره output‌ مشاهده خواهید کرد.

 

همانطور که در خروجی شاهد هستید، برای متغیر prevexp شاخص‌های آماری به همراه یک فاصله اطمینان ۹۵٪ حاصل از روش بوت استرپ دیده می‌شود. برای میانه نیز این فاصله به صورت (60.00،50.0060.00،50.00) ظاهر شده است. همچنین خطا و اریبی (Bias) برآورد میانه نیز محاسبه و نمایش داده شده است. توجه داشته باشید که این سابقه برحسب ماه در نظر گرفته شده است.

همانطور که می‌دانید براساس انحراف استاندارد داده‌ها، می‌توان انحراف استاندارد میانگین (Std. Error) را محاسبه کرد. به این ترتیب خطای برآورد میانگین برابر با انحراف استاندارد داده‌ها تقسیم بر جذر تعداد نمونه‌ها است. همانطور که دیده می‌شود مقدار انحراف استاندارد میانگین یا همان خطای برآوردگر میانگین (4.804) که در ستون سوم جدول زیر دیده می‌شود با میزان برآورد خطای میانگین با روش بوت استرپ (مقدار ستون پنجم 4.86) تقریبا برابر است. ولی این کار برای میانه به سادگی صورت نمی‌گیرد. به همین منظور از برآورد بوت استرپ برای محاسبه خطا و فاصله اطمینان برای میانه استفاده کردیم.

output_bootstrap_explore

با استفاده از جدول بالا کاملا مشخص است که مقدار میانه «سابقه کار قبلی» برابر با 55.00 ماه با خطای 3.66 ماه و میزان اریبی 0.11- ماه برآورد شده است، زیرا ارقام مربوط به سابقه کار برحسب ماه بیان شده بودند. البته می‌توان مشاهده کرد که برای دیگر ویژگی‌های این متغیر مانند واریانس و چولگی و کشیدگی محاسبات مربوط به فاصله اطمینان و اریبی و خطای برآورد توسط روش بوت استرپ انجام و نمایش داده شده است.

موافقین ۰ مخالفین ۰ ۹۹/۰۶/۱۱
سید سعید انصاری فر

نظرات  (۰)

هیچ نظری هنوز ثبت نشده است

ارسال نظر

ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی