آموزش تخصصی آمار و معادلات ساختاری

SPSS- AMOS- LISREL- Smart PLS- Warp PLS- R

آموزش تخصصی آمار و معادلات ساختاری

SPSS- AMOS- LISREL- Smart PLS- Warp PLS- R

آموزش تخصصی آمار و معادلات ساختاری

تحلیل آماری یک ابزار بسیار مفید برای دستیابی به راهکارهای مناسب در زمانی که فرآیندهای واقعی تحلیل به شدت پیچیده یا در شکل واقعی آن ناشناخته است. می‌باشد. تحلیل آماری، فرآیند جمع آوری، بررسی، خلاصه سازی و تفسیر اطلاعات کمّی را برای ارائه ی دلایل زیربنایی، الگوها، روابط، و فرآیندها پوشش می دهد.

*********
اینجانب سیدسعید انصاری فر دارای لیسانس و فوق لیسانس مهندسی صنایع، فوق لیسانس مدیریت دولتی گرایش MIS و دانشجو دکترا مدیریت دولتی گرایش تصمیم‌گیری و خط مشی‌گذاری عمومی می‌باشم. برخی از سوابق علمی پژوهشی به شرح زیر است:

1- دارای بیش از 40 مقاله در موضوعات مختلف (کنفرانس های بین المللی و مجلات علمی پژوهشی و ژورنال ISC)
2- مولف سه کتاب (مبانی سازمان و مدیریت، آموزش مدل سازی معادلات ساختاری و SPSS، نگهداری کارکنان، چالش ها و نظریه ها)
3- مشاوره آماری و انجام تجزیه و تحلیل آماری در بیش از 700 پایان نامه ارشد و 50 پایان نامه دکترا
4- رتبه 7 کنکور دکترا
5- تدریس خصوصی آمار توصیفی و استنباطی و نرم افزارهای SPSS، AMOS، Smart PLS، LISREL
6- کسب رتبه پژوهشگر برتر و برگزیده در جشنواره علمی پژوهشی شهرداری اصفهان

*********
تماس با ما:
ایمیل: ansarifar2020@gmail.com
شماره همراه: 09131025408
شبکه اجتماعی ایتا: 09131025408

*********
گروه علمی آموزشی پژوهشگران برتر:
این گروه با بهره مندی از کادری مجرب آمادگی تجزیه و تحلیل کیفی و داده های کمی آماری در موضوعات مختلف با استفاده از نرم افزارهای مختلفی چون SPSS ، Smart PLS، LISREL،R ، AMOS، Nvivo، Max QDA را دارد.

همکاران:
1-مجید دادخواه
دکتری مدیریت از دانشگاه آزاد اصفهان
2- مرسا آذر:
دکتری مدیریت از دانشگاه آزاد اصفهان
3- زهرا وحیدی:
دکتری مدیریت آموزشی، مدرس تحلیل کیفی
4-محمد مهدی مقامی:
دکتری آمار از دانشگاه اصفهان
5- طناز فریدنی:
کارشناسی ارشد آمار و ریاضی از دانشگاه اصفهان
6- زینب احمدی:
کارشناسی ارشد روان شناسی از دانشگاه اصفهان


***********
از دلایلی که پژوهشگران انجام تحلیل آماری را به ما می سپارند:
- تیم حرفه ای و با تجربه
- متخصص در زمینه انواع نرم افزارهای تحلیل آماری با بیش از 10 سال تجربه
- پشتیبانی و آموزش حضوری به صورت رایگان

۹ مطلب در بهمن ۱۳۹۸ ثبت شده است

محاسبه گر حجم نمونه برای مدل سازی معادلات ساختاری (SEM)

همانطور که بارها در کارگاه های آماری بیان شد، استفاده از آمار استنباطی در جهت تعمیم الگو های کشف شده در در نمونه آماری به جامعه آماری، یک اصل غیر قابل تغییر است. آن اصل معرف بودن نمونه و اینکه نمونه نماینده ای تمام نما از جامعه باشد. ام چه نمونه ای معرف جامعه است و چگونه می توان مطمئن بود که مشت نمونه خروار است؟

  1. روش نمونه گیری باید احتمالی باشد ( یعنی محقق باید در نمونه گیری خود یکی از رویکرد های تصادفی ساده، سیستماتیک، خوشه ای و یا طبقه ای را استفاده کرده باشد)
  2. واحد تحلیل در نمونه گیری بر اساس مسئله پژوهش و جامعه آماری مورد نظر مشخص شده باشد.
  3. و مهمترین بخش حجم نمونه ای مناسب بر اساس روش ها و فرمول های آماری متناسب معین گشته باشد تا بتوان تعمیم پذیری و دقت نتایج را ادعا نمود.(مرادی و میر الماسی، 1396)

متاسفانه همانطور که در دوره های قبلی آماری به دانشجویان گزارش داده شد نزدیک به 98 درصد مطالعات و مستندات علمی در ایران در نمونه ای که شامل 3200 رساله و 1100 مقاله در رشته ها و مقاطع مختلف تحصیلات تکمیلی بررسی شده است، این ایراد فاحش یعنی استفاده از فرمولی مناسب در معیین نمودن حجم نمونه را با خود یدک می کشند که این امر ضربه سنگینی به اعتبار مطالعات کمی کشورمان زده است. در واقع دو روش استفاده از فرمول تعیین حجم نمونه کوکران و یا استفاده از جدول کرچسی و مورگان و یا نظر اساتید باعث این مشکل بسیار بزرگ و بسیار تلخ در تحقیقات کشورمان است. این فرمول ها تنها برای چند آزمون اولیه مقایسه میانگین مثل تی تک نمونه ای و یا دو نمونه مستقل یا دو نمونه وابسته آن هم بصورتی بسیار محدود قابل استفاده است و استفاده از این روش ها در اکثریت آزمون ها اعم از آزمون ها پارامتریک و ناپارامتریک رابطه و علی و تفاوتی کاملا نادرست و غیر منطبق با اصول علمی آماری و روش پژوهش است. در سه سال اخیر هم اکثر دانشجویان آکادمی تحلیل آماری ایران که با روش های مدرن تحقیق آشنا شده و مقالات خود را در ژورنال های معتبر دنیا به چاپ رسانیدند، جملگی یک اصلاحیه از طرف داوران به کار آن ها قبل از پذیرش اعمال می شد و این اصلاحیه چیزی نیست جز اینکه به عنوان مثال در این آزمون رگرسیون، رگرسیون لجستیک، همستگی اسپرمن، پیرسون، یو من وایت نی و …..ده ها ازمون دیگر نباید از این فرمول ها و روش های بسیار ضعیف و قدیمی استفاده می شده است. بنابراین در چرخش دوره های آکادمی تحلیل آماری دوره های دو روزه حجم نمونه با نرم افزار های پیشرفته قرار داده شده است تا محققین در قالب متودی علمی روش نمونه گیری و حجم نمونه خود را مشخص و در مقالات و رساله خود گزارش نمایند.یکی از این دوره دوره ی نرم افزار SAMPLE POWER بوده است که این نرم افزار با قدرت نگارش سناریو های مختلف برای حجم نمونه تحقیق محقق را در انتخاب بهترین سناریو برای حجم نمونه آزمون پژوهشش یاری می رساند. اما از آن جا که این نرم افزار تخصصی که به ظاهر ساده اما دارای نکات بسیار زیادی در تعیین حجم نمونه است تقریبا یک روز 9 ساعته از کلاس به بیان روش تحقیق متناسب برای تعیین حجم نمونه و مفاهیم این حوزه و ارتباط این مفاهیم با هم گذشت. و مفاهیمی چون توان آژمون، اندازه اثر، درجه بندی مقیاس ها، عدم ارتباط حجم نمونه به حجم جامعه، انواع خطا، تعمیم پذیری و دقت نتایج و ….به صورت تفصیلی در آن مورد ارزیابی و بحث واقع شد. این نرم افزار و نرم افزار های مشابه برای نزدیک به 60 آزمون آماری مختلف با حالت های مختلفشان تعیین حجم نمونه می کنند. اما یکی از آزمون های آماری که برای تعیین حجم نمونه در درون این نرم افزار ها فضایی مناسب وجود ندارد، مدل سازی معادلات ساختاری کواریانس محور است. یعنی محقق زمانی که برای آزمون فرضیات خود قصد استفاده از نرم افزار های ایموس ، لیزرل، MPLUS و …. دارد باید حداقل حجم نمونه خود را با یک محاسبه گر مبتنی بر فرمولی مدرن مشخص نماید. روش های مختلفی برای این کار وجود دارد که در دوره ها بیان شده است. مثلا روش مبتنی بر Chi square و یا RMSEA .

اما در محاسبه گر زیر محققین به سادگی می توانند به حداقلی از حجم نمونه برای مدل سازی معادلات ساختاری دست یابند و دیگر به اشتباه از فرمول کوکران و یا روشهای سرانگشتی مثل ضرب عدد ده در سوالات یا عدد 50 در متغیر ها که صرفا شرط استفاده از این نرم افزارها است و نه روش تعیین نمونه، بهره گیرند(مرادی و میر الماسی، 1396)

برای تعیین حجم نمونه از اینجا وارد صفحه محاسبه گر حجم نمونه می شوید. سپس به دقت اعدادی که بیان می شود را طبق نکاتی که گفته می شود وارد می کنید.

  1. در قسمت Anticipated effect size که باید اندازه اثر مورد نظر برای آزمون مدل سازی معادلات ساختاری را وارد نمایید از قانون سه مقدار Chin در سال 1998 برای مقادیر R2 استفاده می کنید. سه مقدار چین شامل 0.19 و 0.33 و 0.67 است که محقق باید اندازه اثر 0.19 را جهت تشخیص آزمون برای این اندازه اثر وارد نماید.
  2.  در گام دوم توان آزمون Desired statistical power level یا همان عکس خطای نوع دوم را باید وارد نمود که در عرف مطالعات، بخوصوص مطالعات علوم انسانی و اجتماعی این مقدار بین 80 تا 90 درصد انتخاب می شود و حداقل آزمون باید توانی برابر با 80 درصد داشته باشد.
  3. در قسمت سوم تعداد متغیر های مکنون مدل پژوهش Number of latent variables اعم از برونزا و درونزا را وارد می کنیم که در مثال کلاس ما 5 متغیر مکنون که هر یک تویسط آیتم هایی اندازه گیری می شد داشتیم. اما هر کس بر اساس مدل خود عمل کند و تعدا متغیر های مکنون خود را در آن وارد نماید.
  4. در گام چهارم تعداد متغیر های آشکار یا همان سوالات پرسش نامه یعنی Number of observed variables را وارد نمایید که در مثال ما 28 متغیر آشکار یا مشاهده پذیر وجود دارد.
  5. در نهایت هم در گام آخر میزان خطای نوع اول را جهت دستیابی به بازه اطمینان 95 یا 99 درصد را وارد نمایید یعنی بجای Probability level مقادیر 0.05 و یا 0.01 را وارد نمایید. البته بهتر است که هر دو در دو سناریو مختلف وارد شوند سپس بر اساس نوع مسئله، توان محقق، بودجه محقق و غیره یکی از حجم نمونه های تعیین شده انتخاب گردد.  سپس آیکون Calculate زده می شود. عدد اول ظاهر شده حجم نمونه علمی شما برای تحقیق پیش رو است.

تعیین حجم نمونه از اینجا

calsulator sample size

منبع: آکادمی تحلیل آماری ایران

۰ نظر موافقین ۰ مخالفین ۰ ۲۸ بهمن ۹۸ ، ۰۷:۵۸
سید سعید انصاری فر

 

روایی پرسشنامه

روایی محتوایی

مفهوم روایی پرسشنامه(Validity) به این سوال پاسخ می‌دهد که ابزار اندازه گیری تا چه حد خصیصه مورد نظر را می سنجد. روش‌های متعددی برای سنجش روایی وجود دارد که روایی محتوایی مرسوم ترین آنها است. در ساده ترین حالت برای سنجش روایی محتوایی، پرسشنامه در اختیار اساتید و خبرگان حوزه قرار داده می شود و از آنها در مورد اعتبار پرسشنامه نظرخواهی می شود. علاوه بر این راهکار ساده، دو روش دیگر نیز برای سنجش روایی محتوایی وجود دارد:

  • نسبت روایی محتوایی یا CVR
  • شاخص روایی محتوایی یا CVI

نسبت روایی محتوایی لاوشه : CVR

نسبت روایی محتوایی یا Content Validity Ratio; CVR یک روش سنجش روایی پرسشنامه است. این نسبت توسط لاوشه Lawshe که یک گته مردی در عرصه روش تحقیق است، طراحی شده است. جهت محاسبه این نسبت از نظرات کارشناسان متخصص در زمینه محتوای آزمون مورد نظر استفاده می شود و با توضیح اهداف آزمون برای آن ها و ارائه تعاریف عملیاتی مربوط به محتوای سؤالات به آن ها، از آن ها خواسته می شود تا هریک از سؤالات را بر اساس طیف سه بخشی لیکرت «گویه ضروری است»، «گویه مفید است ولی ضروری نیست» و «گویه ضرورتی ندارد» طبقه بندی کنند. سپس بر اساس فرمون زیر، نسبت روایی محتوایی لاوشه محاسبه می شود:

فرمول محاسبه روایی محتوایی لاوشه

فرمول محاسبه نسبت روایی محتوایی

در این فرمول داریم:

N: تعداد کل متخصصین

Ne : تعداد متخصصینی که گزینه ضروری را انتخاب کرده‌اند.

حداقل میزان CVR قابل قبول براساس تعداد خبرگان

بر اساس تعداد متخصصینی که سؤالات را مورد ارزیابی قرار داده اند، حداقل مقدار CVR قابل قبول بر اساس جدول زیر بایستی باشد. سؤالاتی مقدار CVR محاسبه شده برای آن ها کمتر از میزان مورد نظر با توجه به تعداد متخصصین ارزیابی کننده سؤال باشد، بایستی از آزمون کنار گذاشته شوند به علت اینکه بر اساس شاخص روایی محتوایی، روایی محتوایی قابل قبولی ندارند.

مقدار CVR قابل قبول

حداقل مقدار CVR قابل قبول بر اساس تعداد خبرگان

شاخص روایی محتوایی CVI

شاخص روایی محتوایی یا CVI Content Validity Index, نیز برای سنجش روایی پرسشنامه استفاده می شود. شاخص روایی محتوا توسط روش والتز و باسل (Waltz & Bausell) ارائه شده است. از خبرگان خواسته می شود میزان مرتبط بودن هر گویه را با طیف چهار قسمتی زیر مشخص کنند:

  • غیر مرتبط
  • نیاز به بازبینی اساسی
  • مرتبط اما نیاز به بازبینی
  • کاملاً مرتبط

تعداد خبرگانی که گزینه ۳ و ۴ را انتخاب کرده اند را بر تعداد کل خبرگان تقسیم کنید. اگر مقدار حاصل از ۰/۷ کوچکتر بود گویه رد می‌شود اگر بین ۰/۷ تا ۰/۷۹ بود باید بازبینی انجام شود و اگر از ۰/۷۹ بزرگتر بود قابل قبول است.

 

منبع : روایی محتوایی لاوشه نوشته آرش حبیبی، کتاب آموزش SPSS

۰ نظر موافقین ۰ مخالفین ۰ ۲۴ بهمن ۹۸ ، ۰۸:۵۰
سید سعید انصاری فر

اکثر اوقات پژوهشگران مایلند بدانند بین دو یا چند متغیر چه ارتباطی وجود دارد. همبستگی، اندازه رابطه خطی بین متغیرهاست.

توجه کنید که ممکن است دو متغیر رابطه داشته باشند ولی این رابطه خطی نباشد.

 – دو متغیر می توانند انواع روابط زیر را داشته باشند:

1- رابطه مثبت داشته باشند. یعنی هر چه قدر متغیر اول زیادتر شود متغیر دوم هم زیادتر شود.

2- رابطه‌ای خطی نداشته باشند.

3- رابطه منفی داشته باشند. یعنی با افزایش متغیر اول، متغیر دوم کاهش پیدا کند.

همبستگی دو متغیر:

برای یافتن همبستگی دو متغیر، با توجه به نوع متغیر مورد مطالعه تصمیم میگیریم که از کدام روش استفاده کنیم.

در نرم افزار می‌توانیم از آزمونهای زیر برای یافتن ارتباط میان دو متغیر استفاده کنیم.

ضریب همبستگی پیرسون برای یافتن ارتباط میان دو متغیر کمی

ضریب همبستگی اسپیرمن برای یافتن ارتباط بین دو متغیر کیفی

ضریب همبستگی کندال برای یافتن ارتباط بین دو متغیر رتبه ای و اسمی

توجه:

زمانی از همبستگی پیرسون استفاده میکنیم که هر دو متغیر کمی بوده و از توزیع نرمال پیروی کند. اگر یکی از متغیر ها از توزیع نرمال پیروی نکند از ضریب همبستگی اسپیرمن استفاده می‌کنیم.

مثال:

1- آزمون پیرسون

با توجه به داده‌ها آیا رابطه‌ای بین قد و وزن افراد وجود دارد؟

مثال:

2- آزمون اسپیرمن

مثال:با توجه به داده‌ها آیا رابطه‌ای بین تحصیلات و وزن افراد وجود دارد؟

3- آزمون کندال

مثال: با توجه به داده‌ها آیا رابطه‌ای بین تحصیلات و جنسیت افراد وجود دارد؟

از منوی Analyze به ترتیب گزینه‌های Correlate و …Bivariate را انتخاب کنید. متغیرهای مورد نظر را به سمت راست انتقال دهید، اگر متغیرها از نوع کمی باشند از قسمت Correlation Coefficient گزینه‌ی Pearson را انتخاب کنید.

b46

از قسمت Test of Singnificance تنها یکی از گزینه‌ها را می‌توانید انتخاب کنید. سپس روی OK کلیک نمایید و در خروجی بر اساس سطح معناداری آزمون مربوزه را بررسی نمایید.

   – همبستگی جزئی

این ضریب، رابطه خطی بین دو متغیر در حضور یک متغیر دیگر را نشان می‌دهد. به عبارت دیگر، ضریب همبستگی دو متغیر در حضور متغیرها‌ی دیگر است. از این ضریب همبستگی بیشتر زمانی استفاده می‌شود که بخواهیم بدانیم تأثیر کدام متغیر به تنهایی از متغیرهای دیگر بیشتر است.

از منوی Analyze به ترتیب گزینه‌های Correlate و …Partial  را انتخاب کنید. متغیرها را به قسمت Variables و متغیر کنترل را به قسمت Controlling for انتقال دهید.

b47

 سپس روی OK کلیک کنید تا خروجی نمایش یابد. با توجه به سطح معناداری در خروجی، معنادار بودن متغیر کنترل را در بین دو متغیر دیگر بررسی نمایید.

   – پایایی و تحلیل عاملی اکتشافی در SPSS:

پایایی یک وسیله اندازه‌گیری، یعنی توانایی آن وسیله برای اندازه‌گیری بدون نقص چیزی که برای اندازه‌گیری آن طراحی شده باشد.پایایی در واقع پیش‌نیازی برای اعتبار آزمون است.

در این نرم افزار ضرایب پایایی مختلفی وجود دارد که یکی از آنها آلفای کرونباخ است که بر اساس میانگین همبستگی سوالات پرسشنامه بدست می‌آید.

دامنه آلفای کرونباخ بین 0 تا 1 است زیرا به عنوان یک ضریب همبستگی بیان می‌شود.

علاوه بر آلفای کرونباخ مدل‌های دیگر پایایی به صورت زیر می باشد:

 1- Split-half reliability 

سؤالات به دو نیمه تقسیم می‌شوند. اگر مقیاس کاملاً معتبر باشد دو نیمه کاملا همبسته هستند.

2- Guttman 

بر اساس دو نیمه کردن که کران‌های پایین را برای اندازه‌گیری پایایی درست محاسبه می‌کند. 

3- Parallel 

علاوه بر گزارش ضریبی برای پایایی از آزمون درست‌نمائی ماکزیمم برای تعیین برابری واریانس‌ها و خطاهای واریانس تمام سولات استفاده می‌کند.

4- Strictly parallel 

علاوه بر گزارش ضریبی برای پایایی از آزمون درست‌نمائی ماکزیمم برای تعیین برابری واریانس‌ها، خطاهای واریانس و میانگین‌های تمام سؤالات استفاده می‌کند.

از منوی Analyze به ترتیب گزینه‌های Scale و … Reliability Analysis را انتخاب کنید. تمام متغیرها را به راست منتقل نمایید. سپس بررسی کنید که فهرست کشویی Model گزینه‌ی Alpha انتخاب شده باشد.

b48

روی …Statistics کلیک کنید. از قسمت Descriptive for گزینه‌های Scale و Scale if item deleted و از قسمت Inter-Item گزینه‌ Correlations را انتخاب کنید:

b49

جدول Item Total Statistics دارای ستون‌های مهمی است که به صورت زیر تفسیر می‌شوند:

ستون Scale Mean if Item Deleted: این ستون میانگین امتیازهای مقیاس را در صورتی که آیتم مربوطه از مقیاس حذف شود، گزارش می‌دهد.

ستون Scale Variance if Item Deleted: این ستون واریانس امتیازهای مقیاس را در صورتی که آیتم مربوطه از مقیاس حذف شود، ارائه می‌دهد.

ستون Corrected ItemTotal Correlation: این ستون ضریب همبستگی پیرسون بین امتیاز آیتم مورد نظر و مجموع امتیازهای آیتم‌های باقیمانده را گزارش می‌دهد.

ستون Squared Multiple Correlation: این ستون نتیجه‌ یک رگرسیون چندگانه را ارائه می‌دهد، به طوریکه آیتم مورد نظر را به عنوان متغیر وابسته و سایر آیتمها را به عنوان متغیر مستقل در نظر می‌گیرد.

ستون Cronbach s Alpha if Item Deleted: این ستون ضریب آلفای کرونباخ را در صورتی که آیتم مربوطه از مقیاس حذف شود، گزارش می‌دهد.

۰ نظر موافقین ۰ مخالفین ۰ ۲۰ بهمن ۹۸ ، ۰۰:۳۲
سید سعید انصاری فر

See the source image

۰ نظر موافقین ۰ مخالفین ۰ ۱۲ بهمن ۹۸ ، ۲۳:۰۷
سید سعید انصاری فر

۱ نظر موافقین ۰ مخالفین ۰ ۱۲ بهمن ۹۸ ، ۲۳:۰۴
سید سعید انصاری فر

بارها این سوال در کلاس های آماری پرسیده شده است که آیا در یک مدل ساختاری دو متغیر میتوانند بر یکدیگر تاثیر متقابل بگذارند. به دو شکل زیر توجه شود که مبادا این دو مدل با یکدیگر اشتباه گرفته شود.

 

 

مدل اول یک همبستگی ساده را بین دو متغیر نشان می دهد اما مدل دوم کاملا وضعیتی متفاوت است و می بینیم که دو متغیر اعتماد اجتماعی و مشارکت اجتماعی مدلی را تدوین کرده اند که در آن هم اعتماد اجتماعی بر مشارکت اجتماعی تاثیر می گذارد و هم در سوی دیگر مشارکت اجتماعی بر اعتماد اجتماعی تاثیر می گذارد. هرگز این پدیده با شکا اول که یک رابطه ی هم بستگی است نباید اشتباه گرفته شود. در حقیقت در اینجا ما بر خلاف شکل اول یک تاثیر متقابل داریم و به گونه ای یک حلقه ایجاد شده است. چنین مدل های ساختاری با این شکل تدوین مدل را مدل های بازگشتی (recursive model) می خوانند.

در واقع در مدل های ساختاری گاهی ما شاهد اثرات متقابل یا دو سویه هستیم و محققین نشان داده اند که چنین مفروضه هایی به لحاظ روش پژوهش امکان پذیر است.

اما باید دید از لحاظ نرم افزاری دوستانی که در کلاس های ایموس آکادمی شرکت نموده اند در مواجهه با چنین روابط بازگشتی چگونه باید عمل کنند.

اولا باید بدانند که در رسم شکل این نوع مدل ها در ایموس باید دو پیکان رسم نمایند. یعنی یک پیکان یک طرفه از سمت متغیر اول به دوم و بعد یک پیکان یک طرفه هم از سمت متغیر دوم به اول. خوب تا اینجای کار بدون ایراد جلو می رود اما نکته مهم اینجاست که در مدل های بازگشتی با این تاثیر های متقابل، به طور ضمنی خطاهای هر متغیر(هر متغیر وابسته یک خطای باقی مانده دارد. پس در اینگونه مدل ها، هر دو متغیر دارای خطا هستند زیرا هر دو هم زمان هم مستقل و هم وابسته هستند) با یکدیگر همبسته هستند. چرا که وقتی دو متغیر بر هم تاثیر متقابل گذارند بدیهی است که متغیر های باقی مانده ی در نظر گرفته نشده در مدل، که در کلاس ها خطای باقی مانده خوانده می شد باید با هم همبستگی داشته باشند. بنابراین مدل را بدرستی ترسیم و اجرا می کنیم.(مرادی، 1395)

تکته نهایی اینکه در کتاب کلاین 2005 که در سایت برای دانلود قرار داده شده و یکی از کتاب های مرجه مدل سازی معادلات ساختاری است بیان شده است که اتفاقا مدل های بازگشتی به جهان واقعی نزدیک تر هستند چرا که بسیاری از متغیر های جهان بر یکدیگر تاثیر متقابل و دو سویه دارند اما در نهایت به دلیل اینکه اطلاعات و مشاهدات چنین مدل هایی را باید از مطالعات پیمایشی طولی بدست آورد و همچنین بدلیل اینکه ممکن است تعداد مجهولات معادله ساختاری از تعداد معادلات آن بیشتر باشد و این باعث غیر مشخص شدن پارامتر های مدل شود محققین تمایلی به استفاده از چنین مدل هایی را ندارند(کلاین، 2005).

منبع: دکتر محسن مرادی

۱ نظر موافقین ۰ مخالفین ۰ ۱۲ بهمن ۹۸ ، ۲۲:۵۶
سید سعید انصاری فر

مدل یابی معادلات ساختاری یک روش منفرد آماری نیست؛ بلکه به خانواده ای از فرآیندهای مرتبط اطلاق می شود و در ادبیات موجود، معادلهای متفاوتی از جمله تحلیل ساختار کوواریانس، مدل یابی ساختار کوواریانس و مدلیابی علیتی نیز برای معرفی آن به کار رفته است.

دلیل کاربرد وسیع و محبوبیت این تکنیک در بین پژوهشگران علوم اجتماعی این است که علاوه بر فراهم نمودن یک روش کمی برای آزمون نظریه،بر دشواری تحلیل روابط بین متغیرها در پژوهشهای انسانی فائق آمده و برخلاف مدلهای خطی مورداستفاده در روشهای سنتی (همانند رگرسیون چندگانه)،قادر است خطای اندازه گیری را نیز برآورد نماید.

با این وجود پژوهشگران نیاز دارند تا قبل از به کارگیری این تکنیک، اطلاعات وسیعی را در مورد روابط بین متغیرهای تحت مطالعه در اختیار داشته باشند؛ از جمله این که کدام متغیر/متغیرها بر کدام یک از متغیر/متغیرهای دیگر تأثیر میگذارند و جهت این تأثیرگذاری چگونه است. این یک امر ساده نیست؛ به ویژه این که برخی از متغیرهای مورد علاقه و استفاده پژوهشگر در مدل پیشنهادی، به طور مستقیم قابل مشاهده و اندازه گیری نیستند؛ و پژوهشگر مجبور (یا علاقه مند) است که اندازه های مربوط به این متغیرهای مکنون یا پنهان variables Latent  یا عاملها (Factors) و یا به اصطلاح دیگر، سازه ها (Constructs )را از روی تعداد بیشتری از متغیرهای قابل مشاهده  (Indicators) شاخصها یا Observable variables برآورد نماید. تکنیکهای آماریSEM از طریق محاسبه واریانس مشترک یا عمومی بین متغیرهای آشکار این کار را انجام می دهند. در واقع محاسبه واریانس یا تغییر اندازه متغیرها، زیربنای بسیاری از تکنیکهای آماری است. به عنوان مثال پژوهشگر در یک مطالعه تجربی علاقمند است با ایجاد تغییر در متغیر مستقل، میزان تغییرات ایجاد شده در متغیر وابسته را برآورد نماید.

در تکنیک مدلیابی معادلات ساختاری پژوهشگر با مشاهده و محاسبه تغییرات همزمان (واریانس مشترک) چند متغیر قصد دارد نتیجه بگیرد که احتمالاً عامل مشترکی تبیین کننده این تغییرات همزمان است. در واقع واریانس مشترک در یک شاخص، بخشی از واریانس است که با سایر شاخصها در اشتراک بوده و توسط یک یا چند عامل تبیین میگردد.

با این وجود پژوهشگر همیشه نمیتواند به راحتی قضاوت کند که تغییرات یک یا چند متغیر مشخص تبیین کننده واریانس در متغیر یا متغیرهای موردنظر است؛ چرا که در مطالعات مربوط به علوم انسانی متغیرهای بیشماری وجود دارند که ممکن است از چشم پژوهشگر پنهان مانده و حتی ناشناخته بوده و تبیین کننده واریانس در متغیرهای مطلوب باشند. لبته چالش دیگری نیز وجود دارد، این که غالباً اندازه گیری متغیرهای انسانی همانند مهارتهای ارتباطی با درجاتی از خطا همراه است که ممکن است مربوط به ابزار اندازه گیری، خطای پژوهشگر و یا تأثیر عوامل ناشناخته باشد.

از این منظر میتوان واریانس مربوط هر شاخص یا متغیر آشکار را به دو بخش شامل الف)واریانس عمومی و ب)واریانس انحصاری variance Unique آن شاخص تقسیم نمود؛ که خود شامل ترکیبی از واریانس واقعی و واریانس خطا در شاخص اندازه گیری شده است. مدلیابی معادلات ساختاری و تکنیکهای زیر مجموعه همانند تحلیل عاملی نقش تفکیک واریانس مربوط به هر شاخص را به عهده دارد.این گونه عملیات با استفاده از نرم افزارهای مختلفی از جمله AMOS ،LISREL،PLS صورت می گیرد.

اطلاعات مورد نیاز برای تحلیل در قالب پارامترهای مدل در اختیار نرم افزار قرار داده میشوند. پژوهشگرانی که قصد استفاده از تکنیک مدلیابی معادلات ساختاری را دارند لازم است به خوبی با این مفهوم آشنا باشند. پارامترهای مدل شامل ویژگیهایی از جامعه انسانی است که قرار است در تحلیل، برآورد شده و آزمون گردند.نرم افزار، پارامترهای آشکار که توسط پژوهشگر فراهم شده را به کار میبرد تا پارامترهای مکنون را با استفاده از آنها برآورد نماید. پارامترهای آشکار شامل ویژگیهایی هستند که پژوهشگر از نمونه ها جمع آوری کرده و پارامترهای مکنون نیز ویژگیهایی هستند که پژوهشگر انتظار دارد مدل طراحی شده وبرازش یافته با داده ها، آنها را نشان دهد.

روابط بین متغیرهای مکنون و متغیرهای آشکار در مدل از جمله پارامترهای موسوم به بارهای عاملی هستند که شامل ضرایب رگرسیونی برای پیش بینی متغیرهای آشکار با استفاده از متغیرهای مکنون هستند. پارامتر دیگر شامل واریانس عامل است که همان واریانس مربوط به هر عامل در داده های حاصل از نمونه گیری است. پارامتر دیگر نیز شامل واریانس خطا  است که نشان میدهد تغییرات مشاهده شده در متغیرهای آشکار علاوه بر تأثیر اعمال شده از طرف عامل مشترک، متأثر از سایر عوامل ناشناخته است. همچنین روابط (همبستگی یا کوواریانس) بین عاملها از دیگر پارامترها هستند.

تحلیل مدل غالباً روی ماتریس واریانس-کوواریانس به عنوان ورودی تحلیل صورت میگیرد که توسط نرم افزار از داده های خام وارد شده، تولید میگردد خروجی تحلیل نیز پارامترهای برآورد شدهای هستند که حاصل برازش یافتن دادههای ورودی با مدل مشخص شده توسط پژوهشگر است.

از آنجایی که پارامترهای مدل (یا همان پارامترهای مکنون) باید از روی پارامترهای آشکار (ماحصل تحلیل اولیه نرم افزار روی داده های خام) برآورد گردند، لازم است تعداد پارامترهای آشکار بیش از تعداد پارامترهای مکنون باشند؛ یا به عبارت دیگر مدل باید مشخص (Identified )باشد؛ در غیر این صورت لازم است پژوهشگر در مدل خود تجدیدنظر نماید.گامهای کلی که پژوهشگران برای اجرای این روش لازم

است دنبال نمایند، شامل الف) قالب بندی مطالعه، ب) کنترل از نظر برقرار بودن مفروضات اجرای مدل معادله ساختاری، ج) بررسی برازش و اصلاح مدل، و د) تفسیر مناسب یافته ها هستند.

 

منبع: دکتر مرادی- اکادمی تحلیل آماری ایران

۰ نظر موافقین ۰ مخالفین ۰ ۱۲ بهمن ۹۸ ، ۲۲:۰۴
سید سعید انصاری فر